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ABSTRACT 

Given a continuous function f: S n - I  -+ ~m and n - m + 1 points 

Pl,...,Pn-m+1 C sn-1, does there exist a rotation ~ E SO(n) such 

that .f(Q(Pl)) . . . . .  .f(Q(Pn-m+1 ))? We give a negative answer to this 

question for m = i if n E {61,63,65} or n _> 67 and for m -- 2 if n >_ 5. 

1. In troduct ion  and n o t a t i o n  

In 1947, B. Knaster posed the following question (see [9]): Given a continuous 

function f mapping the (n - 1)-dimensional Euclidean sphere S n-1 C_ ]~n into 

~m, m < n -  1, and k = n -  m + 1 points p l , . . . , p k  E S n-~, does there exist 

a rotation p E SO(n)  such that f(Q(Pl)) . . . . .  f(P(Pk)) ? Knaster's problem 

had been motivated by a theorem of H. Hopf (see [6]), that  answers the above 

question in the affirmative for k = 2 thus generalizing the Borsuk-Ulam theorem 

on antipodal points of spheres (see [2]). 

In 1955, E. E. Floyd proved Knaster's conjecture for n = 3, m = 1 (see 

[4]). All affirmative answers for further (n, m) do not cover the full general- 

ity of Knaster's question, but rest on restrictions on the geometry of the set 

{P l , . . .  ,Pk} or on the nature of f (see, e.g., [7, 11, 12, 13, 14, 15, 16, 17]). In 

particular, for the central case of real-valued functions ] ,  i.e., m = 1, k = n, 

H. Yamabe and Z. Yujob5 confirmed the conjecture if {P l , . . . ,Pn}  is an or- 

thonormal basis. 
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First counterexamples for m >_ 3 were found by V. V. Makeev and 

I. K. Babenko, S. A. Bogatyi in the 1980s (see [10, 1]). In 1998, W. Chen 

added counterexamples for the remaining dimensions n in the case m _> 3 and 

gave a first one for m = 2, namely for n = 4 (see [3]). The recent paper [8] 

of B. S. Kashin and S. J. Szarek even provides counterexamples for m = 1, 

but only for large dimensions n > 1012. The case m = 2 was not explicitly 

addressed in [8]. However, counterexamples for large n follow from the results 

of that  paper just by thinking of scalar functions as ll~ 2-valued. 

The aim of the present paper is to improve the case m = 1 by adding coun- 

terexamples for relatively small dimensions n, namely for n E {61,63, 65} and 

n _> 67, and to complete the case m = 2 by providing counterexamples for all 

n _> 5. The result for m -- 2 confirms a conjecture of Chen. The new counterex- 

amples to be presented are based on a technical improvement of the methods 

developed in [8] and use local properties of supremum norms on spheres and 

spherical codes. Table 1 summarizes the current state of Knaster's problem. 

Table 1. Current state of Knaster's problem (general case) 

k = 2  k = 3  k > 4  

m = 1 true ([6]) true ([4]) 

m = 2 true ([6]) false ([3]) 

m > 3 true ([6]) false ([3]) 

open if 4 < k < 60 or 
k E {62, 64, 66}, 

false for every other k > 4 
([8], Theorem 5) 

false (Theorems 6 and 7, 
[8] for large k) 

false ([10, 1, 3]) 

As in [8], our methods give asymptotic lower estimates for the smallest pos- 

sible dimension n = n(m,  r) such that  for every continuous function / from 

S n-1 into ~rn and r arbitrary points p l , . . .  ,Pr E S n-1 there exists a rotation 

E SO(n)  such that  f(Q(pj))  is constant, 1 _< j _< r. Since these estimates 

are up to absolute constants the same as those obtained in [8], we do not state 

them explicitly. 

We use the following notation. The cardinality of a set A is denoted by 

IA]. Open, half-open, and closed intervals with endpoints c~,~ E R are (a,f~), 

(a, ~], [a, ~), and [a,/~], respectively. The number [a 1 is defined by [a] = 

rain{/ E Z : l _> (~}. The i-th coordinate of x E R n is denoted by x[i], the 
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n .2  ~- Euclidean norm by Ilxl12 = (~-~i=1 x[~] ) 2. The Euclidean unit ball of Rn is 

B~ = {x • II n : Ilxl12 < 1}, the unit sphere S n-1 = {x e It n : IIx]12 = 1}. The 

symbol absconv(M) stands for the convex hull of M U ( - M ) ,  M being a subset 
of R n . 

The counterexamples to be given for the case m = 1 rest on the function 

]]xHoo = max{lx[1]t,. . .  , ]xtn]]} on R n. In the case m = 2 we shall use the maps 

f(t ,n-O(x) --- ( f l ( x ) , f 2 ( x ) )  = ( max Ix[ill , max. Ix[i]]), 
\ l(_i~_l I+l~_i~_n 

1 < l < n. Finally, we repeat a notation from [8]: Given a set M C_ S d-1 and a 

continuous function f :  S n-1 -4 ]~m, a linear Euclidean isometry Q: l~ d -4 IR n is 

called a K n a s t e r  e m b e d d i n g  of M with respect to f if there exists a constant 

c E It TM such that  f (e(P))  = c for all p E M. 

2. Loca l  p r o p e r t i e s  of  s u p r e m u m  n o r m s  

Following the principal idea from [8] we present counterexamples based on two 

lemmas. Lemma 1, that  generalizes Lemma 3 from [8], describes subsets of 

spheres whose Knaster embeddings Q necessarily have "large" constants c. In 

contrast with that  Lemma 4, which plays the role of Lemma 4 from [8], yields 

sets that  give rise to "small" constants. Suitable unions of sets of the first and 

of the second kind then do not allow any Knaster embedding and thus serve as 

counterexamples to Knaster's conjecture. 

LEMMA 1: Let M C_ S d-1 and assume that 5 > 0 is such that 5 B g C_ absconv(M). 

Then any Knaster embedding ~ of  M into ~n w.r.t, f = ( f l , f 2 )  = ](t,n-O with 

constant c = (cl, c2) satisties 

+ (n - l)c  >  2d. 

Proof." Let s = 1, 2. Since fs is convex and symmetric, fs(Q(P)) = cs for p E M 

implies that  fs(X) < cs for x • absconv(0(M)) = Q(absconv(M)). Now the 

assumption 5B d C_ absconv(M) and the homogeneity of f~ imply that  

Cs 
f s (x)  <_ 7 for x • e(B2d). 

Let Y l , . . . ,  Yd be an orthonormal basis of Q(R d). We define points y, x l , . . . ,  xn 
E R  n by 

d 

( ~ - 1 ) ½  1 ZYJ[i]YJ" y[i] : yj[i] 2 and xi = - ~  
- -  j = l  
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Then xi[i] = y[i] implies fs(xi)  >_ y[i] for s = 1 if i _< l and for s = 2 if i > l, 

respectively. We obtain 

d = E IlYill2 = yj[i]2 = y[i]2 < E f l (x i )2  + f2(xi)2 
j = l  j = l  i=1 i=1 i=1 

and, since ][x~[]2 = 1, finally 

d < l s~ + (n - l~ c~ | 
- -  - J  ( ~ 2  " 

i=l+1 

In the extremal case l = n Lemma 1 yields the following. 

COROLLARY 2: Let M C_ S d-1 and let 5 > 0 be such that 5B d C_ absconv(M). 

Then any Knaster embedding of M into ~ w.r.t, f = [[ • [[oo with constant c 

satisfies 
nc 2 > 52d. 

LEMMA 3: Let 0 < ~ < v ~  and let P l , . . .  ,Pr • S 1 be mutually distinct points 

such that I]Pl - Pj]]2 <_ ~, 1 < j <_ r. Then any Knaster embedding Q of  

{Pl , . . - ,Pr}  into l~ n w.r.t, f = ( f l , f2)  = f(l,n-t) with constant c = (cl,c2) 
satisfies 

[;1 < 1 
Proof'. It suffices to show that 

l 

(1) [2] (c12- 2e)_< E 0('1)[i]2 
i=1 

and, analogously, [~] (c~ -2~) _< •in__l+x 0(Pl)[i] 2, because then the claim follows 

by 
n 

[2]  (c~ + c ~ - 4 ¢ )  < EQ(p , ) [ i ]2  : [[Q(Pl)[[~ = 1. 
i=1 

We can assume that  Cl > 0, since otherwise the estimate (1) is trivial. Let 

{ql,q2} be an orthonormal basis of 0(II~2). Then 0(S 1) = {q(~) : 0 _< ~ < 2~r} 

where q(~) = cos(~)ql + sin(~)q2. There exist angles ~j • [0, 27r), 1 _< j _< r, 

such that O(Pj) = q(~j).  Clearly, for every 1 < i < n there are ai, bi • I~ such 

that  

(2) 

Let 

q(~o)[i] = ai cos(~o + bi). 

A = {i e { 1 , . . . , / } :  ]q@y)[i]l = o for some j • {1 , . . . , r}} .  
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For every i • A there exists j 6 {1, . . .  ,r} such that  [Q(pj)[i][ = [q(~j)[i][ = el. 

It follows from 

{[t)(pl)[i][- CI[ = [[O(P,)[i][ - [O(pj)[i][[ <_ [[O(P,) - O(Pj)[[2 _< e 

that  [O(Pl)[i][ • [Cl - e ,  Cl + ~] and O(pz)[i] 2 >_ (max{c1 - ¢ , 0 } )  2. Since cl _< 1 

implies (max{c1 - ¢ ,  0}) 2 _> c~ - 2 ~ ,  we conclude that  

c~-2~_<Q(pl)[i]  e f o r i • A .  

For every j • {1, . . .  ,r} there exists i • A such that  [q(~j)[i][ = Cl, because 

max{[q(~j)[i][ : 1 < i < l} = f l (O(pj))  = cl. However, the representation (2) 

shows that  a function [q(.)[i][ attains the value Cl > 0 for at most four angles 

in the interval [0, 27r) and, since {Pl , . . .  ,Pr} and so also {q (~ l ) , . . . ,  q(~r)} does 

not contain a pair of antipodal points, for at most two angles from {~1 , . . . ,  ~ } .  

This yields r _< 2]A[ and [~] <_ [A[. Now we obtain (1) by estimating 

l 
[2](C12--2~) ~ ZQ(Pl)[i]2 ~ ZQ(Pl)[i] 2" ]] 

i6A i=1 

An analogous proof yields the following for the case m = 1. 

COROLLARY 4: Let 0 < ¢ < ~ and let P l , . . . , P r  6 S 1 be mutua l l y  distinct 

points  such that  liP1 - Pj[12 <_ ~, 1 < j <_ r. Then  any Knaster  embedding  of  

{Pl , . . .  ,Pr} into ~ w.r.t, f = [{. noo with constant c satisfies 

THEOREM 5: Knaster 's  conjecture fails for m = 1 / f n  E {61,63, 65} or n _> 67. 

Proof: In the sphere S 2 there exists a symmetric net N = - N  C_ S 2 of 22 

points such that  the spherical caps of angular radius a = 27.82 degrees around 

the points of N cover S 2 (see [5], the covering property of the net claimed on 

the web page has been confirmed by independent calculations of the authors). 

We consider the function f = [1" [[~ on S n-1. For fixed 0 < ~ < v ~  we 

choose k = n points P l , . . .  ,Pn on spheres S 1 C_ S 2 C_ S n-1 as follows. We pick 

Pz , . . .  ,Pn-10 6 S 1 and P n - 9 , . . .  ,Pn 6 S 2 such that  I[Pl - Pj[[2 _< ~, 1 < j _< 

n - 10, and {pn-10,. . .  ,Pn} U { - P n - z o , . . . , - P ~ }  = Y. 

Now we assume that  there is 0 6 S O ( n )  such that  f (Q(pl) )  . . . . .  f(Q(Pn)) = 

c. We apply Corollary 2 to M = {Pn-10,.. .  ,Pn}. Since (cosa)B 3 C_absconv(N) 

= absconv(M), we obtain 
nc 2 > 3 cos 2 a. 
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Application of Corollary 4 to { p l , . . . ,  Pn-10} yields 

n - 1 0  
[ - - ~ - - - 1  (c2 - 2~) _< 1. 

Consequently, 
1 (3COS 20~ n - -  10 - 1 ) .  

However, the right-hand side is strictly positive for n E {61, 63, 65} and n _> 67. 

Thus we can obtain a contradiction by choosing ¢ sufficiently small. | 

THEOREM 6: Knaster 's  conjecture fails for m = 2 i f  n >_ 8. 

Proof: We consider the function f = f([n/21,n--[n/2])" Let 0 < e < v~.  

First let n be an even number. We choose the points P l , . . . ,  Pk, k = n -  m + 1 

= n - 1, on a great circle S 1 C_ S n-1 as follows. P l , . . .  ,Pn-3 are selected such 

that  lip1 -Pj]I2 <_ c for 1 < j < n - 3. The remaining two points Pn-2 ,Pn-1  are 

chosen such that  { P n - 3 , P n - 2 , P n - 1 }  U {--Pn-3, -Pn-2, -Pn-1 } form a regular 

hexagon. 

Let us assume that  there exists a rotation 0 E S O ( n )  such that  f (o (P j ) )  = 

c = (cl,c2) is constant for 1 _< j < n -  1. The set M = { P n - 3 , P n - 2 , P n - 1 }  

satisfies V~B2 C absconv(M), since M U ( - M )  is a regular hexagon. Lemma 1 2 2 -- 
with 1 = In/2] = n / 2  yields 

n 2 3 g(cl + cl) > 

By applying Lemma 3 to P l , . . . , P n - 3  we obtain 

n - 2  
2 (c12 + c~ - 4e) _< 1, 

because [(n - 3)/2 7 = (n - 2)/2. Combining the two inequalities we arrive at 

>_ (n - 6 ) / 4 n ( n  - 2) > 0. Thus we obtain a contradiction if we choose the 

initial configuration such that  e < (n - 6 ) / 4 n ( n  - 2). 

Now let n _> 9 be odd. We pick P l , . . . , P n - 4  E 

for 1 < j < n - 4 and Pn-a,P,~-2,Pn-1 E s l  such 

octagon where M = {Pn-4,- • •, Pn-  1 }. 

S 1 such that  lip1 -p i l l 2  <_ e 
that  M U ( - M )  is a regular 

Again we suppose that  there is a rotation Q E SO(n )  such that  f (Q(pj))  = 

c = (Cl, c2) is constant for 1 <_ j < n - 1. In the present case we have (fB 2 C_ 

absconv(M) with (f 2 = (2 + v/-2)/4. Lemma 1 with l = [n/2] = (n + 1)/2 shows 

that  
n + l  2 n - 1  2 2 + v ~  

2 c 1 + ~ c 2 >  2 
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and thus 

n + 1 + 4 )  > 2 
2 - 2 

Application of Lemma 3 to P l , . . . , P n - 4  yields 

3 n 
( c ~ + c ~ - 4 s ) < l ,  

2 

since [(n - 4)/2] = (n - 3)/2. Now we obtain 

v/'2n - 8 - 3v~  
e >  > 0 ,  

- 4 ( n  + 1 ) ( n  - 3) 

again a contradiction if e is sufficiently small. | 

3. A n o t h e r  f ami ly  o f  c o u n t e r e x a m p l e s  for  m = 2 

In the case m = 2 we already have counterexamples for the dimensions n = 4 

(see [3]) and n _> 8 (Theorem 6). In the following we cover the gap between 

4 and 8 by a class of counterexamples for all n _> 5. Though this class rests 

on point configurations similar to that  from Theorem 6, the arguments become 

slightly more technical. 

Given 0 < e < 7r/2, an e-se t  on the sphere S n-1 is meant to be a set of r _> 2 

points P l , - . .  ,pr on a great circle of S n- i ,  consecutively ordered following an 

orientation of the circle, such that  the angular distance between Pl and pj is 

~r/2 if j = r and at most e for 2 <_ j _< r -  1. 

THEOREM 7: Let  n = 4s + t with integers s >__ 1 and t E {1, 2, 3, 4} and consider 

the function f = (/1, f2) = f(rnl2l,n--Fnl2]) on gn-1 .  I f { p l , . . - , P ~ }  C_ gn-1 is  

an e-set such that  

2 s + t + l  and e <  for t # 4, 1 

r =  2s + t f o r t = 4  - 16n 4' 

then ( f l ,  h )  is not  constant  on {Pl , . . .  ,Pr}. 

The following lemma is to be used in the proof of Theorem 7. 

LEMMA 8: Let  {Pl , . - - ,P r}  C_ S n-1 be an e-set, 4 <_ r < n,  and consider the 

function f ( x )  = max{[x[1]l, . . .  , [x[l]l}, l < n, on S n-1. I f  f ( p j )  = c is constant  

for 1 <_ j <_ r, then the set 

A = {i • { 1 , . . . , / } :  [pj[i]] = c for some j • { 1 , . . . , r -  1}} 
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and  the  subse t  

B = {i • { 1 , . . . , l } :  Ipj[i]l = c for s o m e j  • { 2 , . . . , r - 2 } }  

sa t i s fy  the fo l lowing condi t ions .  

(a) IA] _> [(r - 1)/2] and  IPl[i]] _> (1 - v ~ e ) c  for all i e A .  

(b) IBI _> r(r - 3)/21 and Ip~[i]J < v~cc for all i • B .  

(c) I f  IAI = (r - 1)/2 then  A = B .  

Proof." If 

are trivial. 

Since pl 

{ p l , . . . , p r }  
pj  = p (~ j ) ,  

For every 

(3) 

c = 0 then pj[i] = 0 for all 1 < i < n, 1 _< j _< r and the assertions 

In the following we assume tha t  c > 0. 

and Pr are perpendicular,  the great circle containing the set 

is {p(~) : 0 < ~ < 21r} where p(~) = cos(~)pl + sin(~)p2. Clearly, 

1 _< j _< r, where 0 = ~I < ~ < " "  < ~r-1 _~ 5" < ~ r  ---- 7r/2. 

1 < i < l the function IP(')[i]] is of the form 

Ip(~)[ill = la~ cos(~ + b~)l. 

]p(.)[i]] is a 7r-periodic ]ail-Lipschitz function. If it is not constant,  Ip(.)[i]] 

a t ta ins  its maximum lai] for exactly one argument  ~i in the interval [0, 7r) and 

its minimum 0 for the corresponding angle ~i - 1r/2 or ~i + ~ /2  in [0, r ) .  Since 

IP(0)[i]I = IP][i]I <- e and Ip(rc/2)[i]l = IPr[i]] <_ c, one obtains lail < v ~ c  and 

(4) Iqp(~)[i]l- Ip(~)[i]ll <_ 4 i c l ~  - ~1 

for arbi t rary angles ~, r/. 

For proving ]A I >_ [(r - 1)/2] we first note that ,  according to f ( P l )  . . . . .  

f (Pr -1)  = c, for every j E { 1 , . . . ,  r -  1} there exists i E A such tha t  iP(~i)[i]l = 

IPi [i]] = c. However, the representation (3) shows tha t  a function IP(')[i]1 a t ta ins  

the value c at  most  two times in the interval [0, ~r). Hence 2]A I _> r - 1. This 

yields IAI >_ [(r - 1)/2].  

In the same way one obtains ]B] > [(r - 3)/2] .  

For the proof of the second part  of (a) let i E A be fixed. We find j E 

{ 1 , . . . ,  r - 1} such tha t  Ipj[i]] = c. By (4), we obtain 

Ipl[i]l _> Ipj[i]l-  Ilpj[i]l- Ipl[i]ll = ~ - I t p ( ~ J ) [ i ] l -  [p(0)[i]ll 
_> c - v ~ c ~ j  _> (1 - v ~ ) c ,  

which is our claim. 

Now we fix i • B for verifying the second part  of (b). We choose j • 

{2 , . . .  , r -  2} such tha t  ]pj[i]] = c. Since ]pj_i[i]l <_ f ( P j - 1 )  = c and ]pj+][i]] <_ 
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(5) 

as asserted. 

f (Pj+l)  = c, the function ]p(.)[i][ a t ta ins  its maximum for an angle yi • 

( ~ j - l , ( f j + l ) .  In particular,  0 _< qi _< e. Then [P(qi + 7r/2)[i][ = 0 and, by 

(4), 

7r 

For proving (c) we suppose tha t  IAI = (r - 1)/2. Let us assume tha t  A ~ B. 

Then there exists io • A \ B, tha t  is, Ip((fl)[io]l = c or Ip((fr-1)[io]l = c, but  

Ip((fj)[io]l ~ c for 2 _< j _< r - 2 .  Since 21A I = r -  1, the above argument  showing 

tha t  IA] >_ F(r - 1)/21 now implies tha t ,  for every i • A, the function ]p(-)[i]] 

necessarily at tains the value c for two of the angles ( f l , . . . ,  (fr-1. For i = io 

this yields IP((fl)[io]l = IP((fr-1)[io]l = c. The representation (3) then yields 

Ip((f2)[i0]l > c or Ip((fr)[io]l > c, because 0 = (fl <~ (f2 < (fr-1 < (fir : 71"/2. 

However, Ip(~2)[io]l _< ](p2) = c and Ip((fr)[i0]l _< f (pr) = c. This contradiction 

proves A = B. I 

Proo f  o f  Theorem 7: 
l _ < j _ < r .  Then 

We assume tha t  ( f l , f 2 ) (P j )  = (Cl,C2) is constant  for 

(6) 1 ~ max{cl ,  c2} ~ 1, 

for max{cl ,c2} = IlpjlG and Ilpjll2 = 1. 

We put  C1 = { 1 , . . . ,  [n/2]},  C2 = {[n/2]  + 1 , . . . , n }  and 

Aq = {i • Cq : [pj[i][ = Cq for some j • { 1 , . . . , r -  1}}, 

Bq = {i • Cq: [pj[i]l = Cq for some j • { 2 , . . . , r -  2}} 

f o r q =  1,2. 

Let i' • C1 \ A1. We est imate 

n 

1 =  IIp, = E p l [ i ]  2 ~ pl[i'] 2 + E pl[i]2. 
i=1 iEA1uA2 

Lemma 8(a) yields pl[i] 2 >_ (1 - v~¢)2c~ _> (1 - 2x/~e)c~ for i E Aq. Hence 

1 >_ pl[i'] 2 + IAllc~ + [A21c~ - 2v~e(IAl[C ~ + IA21c~). 

By (6), we obtain 

+ I&lc~) < ~ ( I A ~ I  + IA21) < 
3 

2x/2e([Al[C~ 
- 1on ~ - 16n 3 
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and 

( 7 )  

In particular 

(8) 

even if A1 = C1. 
Now let i ~ E C1 \ B1. 

A. HINRICHS AND C. RICHTER Isr. J. Math. 

1 > p~[i,]2 + IA~lc~ + [ A 2 1 c ~  - - -  16n 3 
for i' E C1 \ A1. 

3 
1 > IAilc~ +lA21c] 16n3, 

The coordinates of Pr satisfy Ip~[i]l < fq(pr) = cq if 
i E Cq and Ipr[i][ < v~eCq for i e Bq by Lemma 8(b). Thus 

1 = []pr]]~ <_ 2~2(]B1 [c~ + [B2[c~) +p~[i,]2 + (]C1]-  ] B I [ -  1)c~ + (]C2]-  [B2[)c 2. 

Estimate (6) yields 2e2([BllC 2 + [B2[c~) < E(iBI[ + [B2D _< 1/16n 3 and 

(9) 

Since Ip~[i']l < cl, we have in particular 

1 

If B1 = C1 formula (10) can be directly deduced in analogy with (9). 
Combining (8) and (10) we arrive at 

(11) + i , , i -  + + < 1 
- 4n 3" 

CASE 1: t = 1. The definition of n and r and Lemma 8(a) and (b) yield 

(12) 

f o r q =  1,2. 

r~-i = 2~ + 1, 

IAql >_ r ~ l  = s + 1, 

n -  r~.l  = 2 , ,  

IBql  > r . - ~ l  = .~ 

CASE 1.1: IAll + IB, I > 2 s +  1. Then IAll + IBl l -  In/2] _> 1, {A2I + IBel-  
n + [n/2] > 1 and (11) yields c~ + c 2 <_ 1/4n 3, a contradiction with (6). 

CASE 1.2: [AI[ + [BI[ _< 2s + 1. Then, by (12), 

(13) [ A l l = S + l  and [ B l i = s .  

Now (12) yields [All + [BI[ - Fn/2] = 0, [As[ + ]B2[ - n + In/2] > 1, and, by 
(11), c~ < 1/4n 3. Then (6) gives 1/v/-n _< cl. Thus 

(14) 1 <c~ and c ~ <  1 2 
n - _ ~ C l .  
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In the present case C1 \A1 # O, because IC~l = rn/2q = 2 s + l  > s + l  = I&l .  

For i' • C1 \ A1 inequalities (7) and (10) show that 

1 
Pl[i']2 <- ( [ 2 ]  - IAll - IBI[)  c~ + ( n -  [2] - IA21 -IBzI)  c~ + 4n ----5" 

By (12), we have [n/21 - I A l l -  IB, I < 0 and n - [n/2] - I A u I -  IB21 < 0. 
Therefore, with (14), 

1 1 2 i '  (15) pl[i'] 2 _ ~ n  3 < ~n2Cl for • C1 \A1. 

If i' • C1 \ B1 estimates (8) and (9) yield 

pr[i'] 2 > (IAll + IBll + 1 - [ 2 1 ) c ~  + (IA21 + IB21-n + [2 l )c~  1 
- 4n 3" 

By (12), IAll + IB, I + 1 - [n/21 > 1 and IA21 + IB21 - n + rn/21 > o. Thus, 
with (14), 

1 > c l  2 _ 1 2 1 2 i '  (16) pr[i'] 2 > Cl 2 - 4n---- ~ _ ~ n 2 C l  > ~C 1 for • C1 \ B1. 

According to (13) there exists a unique i0 such that A1 \ B1 = {io}. We use 
this for an estimate of the scalar product of the perpendicular vectors Pl and 

p r  • 

(17) 

We have 

and 

0 = I(px,p,.)l _> Ipx[iolp~[io]l- ~ Ipl[i]pr[ill. 
iE{1 ..... n}\{io} 

1 _> (1 - Vf2S)Cl _~ ~ c 1  

Ipl[i]t _< cl 
1 

_<~cl  1 
<_ c2 <_ ~ c i  

for i = io • A1 \ B1 = {io} 
(by Lemma 8(a)), 

for i • B1, 
for i • Ct \ A1 (by (15)), 
for i • C2 (by (14)) 

>_ ~ c l  1 for i • B1 IPr[i]l < v~Ecl < ~ c l  
Cl for i E C1 \ A1, 

1 for i • C2 < C 2 ~ ~nnC1 

Therefore (17) can be continued to 

1 2 O >_ ~c2 - ( n -  t) l c 2  = ~nCl > O. 

This contradiction completes the consideration of Case 1. 

for i = io • A1 \ B1 = {io} (by (16)), 

(by Lemma 8(b)), 

(by (14)). 
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['-'] 
- - n -  = 2 s + l ,  iAql >- T = s + l ,  

(18) 
r - 3  

This yields in particular IA21 + IB2I - n + [n/2] _> 0. Hence (11) implies that  

/ 1 
(19) ~[Al l - t - IBl l -  i~ l ) c~  < 4n 3 

Since the roles of f l  and f2 can be exchanged by a permutation of the coordi- 

nates, we can assume that  Cl = max{c1, c2 } without loss of generality. Therefore 

Then, by (18), IA, I + [B l l  - rn/2]  >_ (s + 2) + ,~ - 

1 
(20)  c~ > - 

n 

by (6). 

CASE 2.1: [AI[ > s + 1. 

(2s + 1) = 1 and (19) gives c~ < 1/4n 3 in contradiction with (20). 

CASE 2.2: [AI[ _< s + 1. This yields necessarily [ A I [ =  s + 1 = (r - 1)/2. 

Now Lemma 8(c) shows that  A1 = B1. Therefore IAll + I B l l -  [n/2] 
= 2[A1[ - In~2] = 1 and, by (19), c~ _< 1/4n 3. This contradiction with (20) 

finishes Case 2. 

CASE 3: t = 3. Then [n/2] = 2s+2 ,  n -  In~21 = 2 s + l ,  [Aq] >_ [ ( r -  1)/2] = 

s + 2, and [Bq[ >_ [ ( r -  3)/2] = s + 1. Accordingly, inequality (11) yields 

c~ + 2c~ _< 1/4n 3, a contradiction with (6). 

CASE4: t = 4 .  In this case [n/2] = n - I n ~ 2 ]  = 2 s + 2 , [ A q [ > _  [ ( r - 1 ) / 2 1  = 

s + 2, and [Sq[ _> [(r - 3)/21 = s + 1. Now (11) gives Cl 2 + c 2 < 1/4n 3, again a 

contradiction with (6). | 
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